

MCB-003-1172003 Seat No. _____

M. Sc. (Sem. II) (CBCS) Examination April / May - 2018

MS - 203: Applied Multivariate Analysis

Faculty Code: 003
Subject Code: 1172003

		Subject Code: 1172003
Tim	ne : 2	$\frac{1}{2}$ Hours] [Total Marks : 70
Ins	truct	ions: (1) Attempt all questions.
		(2) Each question carries equal marks.
1	Ansv	wer any seven of the following:
	(1)	Test based on is Unbiased, UPM and Admissible.
	(2)	Wishart distribution is a multivariate analog to distribution.
	(3)	statistic is a generalization of Student's t_statistic
	(4)	test has a monotonic power function.
	(5)	Exp $\left(it'\mu - \frac{1}{2}t'\Sigma t\right)$ is a characteristic function of distribution.
	(6)	If $X_1, X_2,, X_N$ be a random sample of size N from
	(7)	$N_p(\mu, \Sigma)$ then $\overline{X} \sim$
	(8)	In expression of the term $(\overline{X}^{(1)} - \overline{X}^{(2)})'$ S^{-1} $(\overline{X}^{(1)} - \overline{X}^{(2)})$
	(9)	is known as Mahalanobis D^2 . The concept of distance between two multivariate normal populations was proposed in
	(10)	Principal component analysis is reduction technique.

2	Ans	wer the following questions : (Any Two)	14
_	(a)	If $X \sim N_p(\mu, \varepsilon)$ then show that $Y \sim N_p(\mu, c\varepsilon c')$, where $Y = CX$ and C is non-singular matrix.	
	(b)	Explain the reproductive property of Wishart's distribution.	
	(c)	Explain principal components.	
3	Answer the following questions:		14
	(a)	Obtain conditional distribution of multivariate normal distribution.	
	(b)	Obtain probability density function of multivariate normal distribution.	
		OR	
3	Answer the following questions:		14
	(a)	If a p-component vector $Y \sim N_p(0,T)$ then show that	
		$Y'T^{-1}Y$ is distributed as χ_p^2 where T is non–singular	
		matrix.	
	(b)	State and prove any two applications of Hotelling's T^2 .	
4	Answer the following questions : (Any Two)		14
	(a)	State and prove Invariant property of Hotelling's T^2 .	
	(b)	State and prove the necessary and sufficient condition for Multivariate Normal distribution.	
	(c)	Obtain the probability density function of Wishart's distribution.	
5	Ans	wer the following questions : (Any Two)	14

- Obtain characteristic function of Wishart's distribution. (a)
- Explain Mahalanobis D^2 . (b)
- Derive the distribution of Hotelling's T^2 . (c)
- Find characteristic function of multivariate normal (d) distribution.